
Efficient IO-Intensive 
us-scale Applications using 
eBPF

Kumar Kartikeya Dwivedi Rishabh Iyer Sanidhya Kashyap



Outline

01 Motivation

02 Case Studies

03 Rethinking BPF’s Role

04 Ideas

05 Challenges

2



01 Motivation

3



Change is the only constant
● Evolving hardware demands the OS and workloads to adapt.
● Machines are scaling vertically.

○ More core counts, more PCIe bandwidth, more NIC bandwidth, etc.

01 Motivation

4



Change is the only constant
● Evolving hardware demands the OS and workloads to adapt.
● Machines are scaling vertically.

○ More core counts, more PCIe bandwidth, more NIC bandwidth, etc.
● Shifts bottlenecks into the host.

○ Suboptimal scheduling, but we now use sched_ext / ghOSt.
○ Higher resource utilization with isolation is difficult.

01 Motivation

5



Much ink has been spilled
● Tons of people exploring new ideas in industry in academia.
● Only a few make it into production kernels like Linux.
● It’s not just a technical problem, but also a human problem.

01 Motivation

6



“Valley of death” for interesting ideas.
● Interesting academic ideas fail to gain traction due to lack of integration.
● Relegated to prototype systems.

01 Motivation

7



“Valley of death” for interesting ideas
● Interesting academic ideas fail to gain traction due to lack of integration.
● Relegated to prototype systems.
● Others go with user space alternatives since kernel is hard to work with.
● Slower iteration, complex deployment, etc.
● eBPF helps here, but it’s limited in scope.

01 Motivation

8



02 Case Studies

9



CS 1: Dynamic Scaling of Network Stack
● Spread or join cores doing network processing dynamically.
● Google’s Snap / NetChannel both achieve this.

02 Case Studies

10



CS 1: Dynamic Scaling of Network Stack
● Spread or join cores doing network processing dynamically.
● Google’s Snap / NetChannel both achieve this.

○ Snap: User space networking stack, single busy-polling thread controls spread or 
join logic. Engines encapsulate transport layer processing, engines mapped to 
threads.

○ NetChannel: Decouple packet processing queues from kthreads, then 
independently scale / compact both queues and threads, and control their 
assignments.

02 Case Studies

11

https://research.google/pubs/snap-a-microkernel-approach-to-host-networking/
https://www.cs.cornell.edu/~qizhec/paper/netchannel.pdf


Why is threaded NAPI / cpumap not enough?
● We still need explicit CPU allocation for each thread.
● Wasted capacity when e.g. 4 threads on 4 CPUs are at 20% utilization each.

02 Case Studies

12



Why is threaded NAPI / cpumap not enough?
● We still need explicit CPU allocation for each thread.
● Wasted capacity when e.g. 4 threads on 4 CPUs are at 20% utilization each.
● Cannot co-locate with application threads.

○ Packet processing will suffer ms-scale tail latencies.
● Cannot co-locate with itself to compact work onto same core.

○ Same issue; ms-scale tail latencies.
● See Jakub’s TAPI idea.

02 Case Studies

13

https://people.kernel.org/kuba/#:~:text=TAPI%20(work%20in%20progress)


Efficiency
● Dynamic scaling enables better efficiency in two ways.
● 1) Overcommit and harvest underutilized capacity when relatively idle.
● 2) Reclaim cores proportionally when offered load is high.
● Scaling decisions are a function of many variables:

○ SLOs, target latency / throughput, traffic pattern (bursty vs streaming), etc.

02 Case Studies

14



Isolation
● Co-locating ‘latency-critical’ and ‘throughput-intensive’ applications.
● Classic approach is through core-separation for both.
● Compact work onto same core if some latency inflation is tolerable, with prioritization.
● Requires control on packet processing within the worker.
● E.g. Weighted Round Robin when servicing NAPI instances, etc.

02 Case Studies

15



Co-design with CPU scheduler
● This is partly a scheduling problem.
● We need soft-partitioning of network processing cores from the rest of the system.
● The network stack then maps work to its soft-partitioned core group.
● The core group grows and shrinks as per the offered load.
● The signal to grow and shrink is given to the CPU scheduler by the network stack.

02 Case Studies

16



“Warm” cores for absorbing bursts
● Keep aside a smaller partition of idle cores without going to lower c-state.
● Absorb bursts (translates to “spread through wakeups”) at microsecond-scale.
● Harvestable cores, but can be instantly preempted.
● Hot migration of whatever thread was running on them, to prevent starvation.

02 Case Studies

17



Preventing starvation of EEVDF tasks
● Some housekeeping kthreads still need to be run on packet processing CPUs.
● Microsecond-scale time slicing is necessary (to avoid ms-scale tail latencies).
● Google did SCHED_FIFO-like MicroQuanta scheduling class for Snap threads.

02 Case Studies

18



Preventing starvation of EEVDF tasks
● Some housekeeping kthreads still need to be run on packet processing CPUs.
● Microsecond-scale time slicing is necessary (to avoid ms-scale tail latencies).
● Google did SCHED_FIFO-like MicroQuanta scheduling class for Snap threads.
● Out of every 1 ms, 0.9 ms dedicated to MicroQuanta task, 0.1 ms to EEVDF tasks.
● Con: Blackout for 0.1 ms / 100 us. Adjust blackout period as per requirement.
● scx_microq? For now I just forward ported Xi Wang’s patch set to bpf-next.

02 Case Studies

19

http://microq
https://lore.kernel.org/all/20190906093412.233463-2-xii@google.com/


CS 2: Dataplane Operating System
● A line of academic work where kernel-bypass libOS link with the application.
● Key idea: Co-design of scheduling and lightweight network data plane.

02 Case Studies

20



CS 2: Dataplane Operating System
● A line of academic work where kernel-bypass libOS link with the application.
● Key idea: Co-design of scheduling and lightweight network data plane.
● Central dispatcher on one core.
● Distribute packets for network stack + application processing to workers 

busy-polling other cores.

02 Case Studies

21



CS 2: Dataplane Operating System
● A line of academic work where kernel-bypass libOS link with the application.
● Key idea: Co-design of scheduling and lightweight network data plane.
● Central dispatcher on one core.
● Distribute packets for network stack + application processing to workers 

busy-polling other cores.
● Different scheduling strategies (FCFS, Processor Sharing) to handle different 

request latency distributions.

02 Case Studies

22



Key differences
● All network processing co-located with application threads.
● Request latency spans (network + application) work.
● Hence inline execution allows scheduling control on both.

02 Case Studies

23



Key differences
● All network processing co-located with application threads.
● Request latency spans (network + application) work.
● Hence inline execution allows scheduling control on both.
● Also customize the data path.

○ Zero-copy thin data path doing IP+TCP processing on XDP frames over AF_XDP.

02 Case Studies

24



Key differences
● All network processing co-located with application threads.
● Request latency spans (network + application) work.
● Hence inline execution allows scheduling control on both.
● Also customize the data path.

○ Zero-copy thin data path doing IP+TCP processing on XDP frames over AF_XDP.
● Request latency can be 10s of us minimum.

02 Case Studies

25



Takeaway
● Dynamic Scaling: Practical, beneficial, already proven to be useful.
● Dataplane OS: Academic, zero traction due to scorched-earth approach.

02 Case Studies

26



Takeaway
● Dynamic Scaling: Practical, beneficial, already proven to be useful.
● Dataplane OS: Academic, zero traction due to scorched-earth approach.
● Both need:

○ Close integration of CPU scheduling with the network stack.
○ Fine-grained control on assignment of packet processing work to CPU.
○ Assignment can and will change dynamically.
○ Possible customization of data path.

02 Case Studies

27



03 Rethinking BPF’s Role

28



This sounds achievable!
● A lot of necessary pieces are available.

○ sched_ext, AF_XDP, cpumaps, etc.
○ Run BPF programs in kthreads.
○ Expose packet queues?
○ Some glue to tie everything together.
○ Piece together a struct_ops interface?
○ Add more hooks!

03 Rethinking BPF’s Role

29



This sounds achievable!
● A lot of necessary pieces are available.

○ sched_ext, AF_XDP, cpumaps, etc.
○ Run BPF programs in kthreads.
○ Expose packet queues?
○ Some glue to tie everything together.
○ Piece together a struct_ops interface?
○ Add more hooks!

● Let’s take a step back.

03 Rethinking BPF’s Role

30



Why did this not happen already?
● Kernel is hard to change.
● Not a pressing business need.
● People equipped to make such changes stuck with other higher-priority work.
● Some scenarios are too deployment-specific.
● A combination of many reasons; social, and technical.

03 Rethinking BPF’s Role

31



But it did happen outside Linux!
● Academics built their own toy OS.

○ More control, faster iteration.
● Others went the user space kernel-bypass route.

○ Easier development, faster iteration.

03 Rethinking BPF’s Role

32



But it did happen outside Linux!
● Academics built their own toy OS.

○ More control, faster iteration.
● Others went the user space kernel-bypass route.

○ Easier development, faster iteration.
● What are they getting?

○ Freedom.
○ Freedom to make disruptive design choices people didn’t anticipate.

03 Rethinking BPF’s Role

33



But it did happen outside Linux!
● Academics built their own toy OS.

○ More control, faster iteration.
● Others went the user space kernel-bypass route.

○ Easier development, faster iteration.
● What are they getting?

○ Freedom.
○ Freedom to make disruptive design choices people didn’t anticipate.

● We want Linux to be the test bed, and for eBPF to be the means to innovate.

03 Rethinking BPF’s Role

34



Anticipation is how extensibility works
● Safety is table stakes.
● So we do need to “anticipate” some sort of usage, and enforce safety around that.
● Safety translates to constraints (static or dynamic checks).
● Constraints limit freedom in design.

03 Rethinking BPF’s Role

35



What are we trying to change?

03 Rethinking BPF’s Role

36



What are we trying to change?
● Trying to change “where” things are executed, and “when”.
● Where: Execution context (which kthread, and indirectly, which core).
● When: Time of execution, i.e. scheduling (related: queueing, batching).
● Less concern on “what” is being executed, i.e. we’re mostly oblivious to work done.

03 Rethinking BPF’s Role

37



Not just networking
● A broad set of OS design changes require control over “where” and “when”

○ In addition to “what”, which eBPF can address already.
● “What” gets executed encapsulates functional logic of the kernel.
● “Where” and “when” encapsulate structural properties.

03 Rethinking BPF’s Role

38



Not just networking
● A broad set of OS design changes require control over “where” and “when”

○ In addition to “what”, which eBPF can address already.
● “What” gets executed encapsulates functional logic of the kernel.
● “Where” and “when” encapsulate structural properties.
● We need primitives to make structural changes, without anticipating use cases.
● Still safe, still not extreme freedom, but practically more than enough.
● For a correct kernel change, you STILL adhere to safety.

03 Rethinking BPF’s Role

39



04 Ideas

40



Approach: Mechanism

04 Ideas

● Encapsulate functional logic or computation as an object.
● Expose this object as part of BPF’s programing environment.
● Allow BPF developers to drive these objects to completion (i.e. execute them).

41



Approach: Mechanism

04 Ideas

● Encapsulate functional logic or computation as an object.
● Expose this object as part of BPF’s programing environment.
● Allow BPF developers to drive these objects to completion (i.e. execute them).
● Separate execution resources (code + data) from their invocation.
● Hand over control and ownership of invocation to the BPF developer. 

42



Coroutines

04 Ideas

● Encapsulation of code + data using coroutines.

43



Coroutines

04 Ideas

● Encapsulation of code + data using coroutines.
○ 1960s tech, so nothing bleeding edge.

44

https://melconway.com/Home/pdf/compiler.pdf


Coroutines

04 Ideas

● Encapsulation of code + data using coroutines.
○ 1960s tech, so nothing bleeding edge.

● All logic is encapsulated in coroutine body.

45

https://melconway.com/Home/pdf/compiler.pdf


Coroutines

04 Ideas

● Encapsulation of code + data using coroutines.
○ 1960s tech, so nothing bleeding edge.

● All logic is encapsulated in coroutine body.
● Suspension points indicate “spatial” and 

“temporal” changes.

46

https://melconway.com/Home/pdf/compiler.pdf


Coroutines

04 Ideas

● Encapsulation of code + data using coroutines.
○ 1960s tech, so nothing bleeding edge.

● All logic is encapsulated in coroutine body.
● Suspension points indicate “spatial” and 

“temporal” changes.
○ Execution context / location can be switched.
○ Time until resumption is user-controlled.

47

https://melconway.com/Home/pdf/compiler.pdf


Coroutines

04 Ideas

● Encapsulation of code + data using coroutines.
○ 1960s tech, so nothing bleeding edge.

● All logic is encapsulated in coroutine body.
● Suspension points indicate “spatial” and 

“temporal” changes.
○ Execution context / location can be switched.
○ Time until resumption is user-controlled.

● Control over “where” and “when” is achieved.

48

https://melconway.com/Home/pdf/compiler.pdf


Coroutines
● Both examples want to maintain queues.
● Control over where and when packets are 

processed.

04 Ideas

data_path(struct xdp_md *ctx) {

co_await queue();

…

}

49



Coroutines
● Both examples want to maintain queues.
● Control over where and when packets are 

processed.
● Suspension point provides a natural hook to 

do so.
● Data path processing on resumption.

04 Ideas

data_path(struct xdp_md *ctx) {

co_await queue();

…

}

50



Coroutines
● Queue function gets access to coroutine 

handle of suspended coroutine.

04 Ideas

queue(coro_handle<> h) {

list = pick_queue(...);

list_add(&h->node, &list);

}

51



Coroutines
● Queue function gets access to coroutine 

handle of suspended coroutine.
● Allow stashing coroutines as kptrs into 

maps, linked lists, RB-trees.

04 Ideas

queue(coro_handle<> h) {

list = pick_queue(...);

list_add(&h->node, &list);

}

52



Coroutines
● Worker kthreads run BPF programs that 

can pull coroutines out and resume them.

04 Ideas

worker() {

while (h = list_pop_front(...))

h.resume();

}

53



Coroutines
● Worker kthreads run BPF programs that 

can pull coroutines out and resume them.
● Natural point for batching.

04 Ideas

worker() {

int i = 0;

char coro_handle<> arr[BATCH_COUNT];

while (arr[i++] = list_pop_front(...))

if (i == BATCH_COUNT) break;

while (i—-)

arr[i].resume();

}

54



Coroutines

04 Ideas

● Verifier + BPF runtime ensure resource safety and kernel integrity.
● Code + data packaged as an object whose lifetime is controlled by user.
● The same “building block” can be used to control “where” and “when”.

55



Before you freak out!

04 Ideas

I’m not asking us to add coroutines to BPF…

56



Before you freak out!

04 Ideas

I’m not asking us to add coroutines to BPF…YET.

57



Approach: Safety

04 Ideas

● We want to apply this mechanism to any part of the kernel.
● The only requirement is to ensure “safety”.
● Safety == constraints enforced by BPF on use of these mechanisms.

58



Approach: Safety

04 Ideas

● We want to apply this mechanism to any part of the kernel.
● The only requirement is to ensure “safety”.
● Safety == constraints enforced by BPF on use of these mechanisms.
● Make the kernel “export” these constraints as specifications.
● Not in the verifier, but through annotation of kernel code.
● Verifier is simply the consumer of the specification, and it’s enforcer.

59



Specification
● Network Rx example.
● Lean zero-copy data path for dataplane OS.

04 Ideas

lean_data_path(struct xdp_md *ctx) {

iph = ip_hdr(ctx);

 th = tcp_hdr(ctx);

ip_rcv(ctx, iph);

sk = sk_lookup(ctx);

socket_lock(sk);

// Assume for TCP_ESTABLISHED

tcp_rcv(ctx, th);

queue_to_socket(sk, ctx);

socket_unlock(sk);

…

}

60



Specification
● Two basic requirements:

○ ip_rcv must happen before tcp_rcv.

04 Ideas

lean_data_path(struct xdp_md *ctx) {

iph = ip_hdr(ctx);

 th = tcp_hdr(ctx);

ip_rcv(ctx, iph);

sk = sk_lookup(ctx);

socket_lock(sk);

// Assume for TCP_ESTABLISHED

tcp_rcv(ctx, th);

queue_to_socket(sk, ctx);

socket_unlock(sk);

…

}

61



Specification
● Two basic requirements:

○ ip_rcv must happen before tcp_rcv.
○ tcp_rcv must have socket lock held. 

04 Ideas

lean_data_path(struct xdp_md *ctx) {

iph = ip_hdr(ctx);

 th = tcp_hdr(ctx);

ip_rcv(ctx, iph);

sk = sk_lookup(ctx);

socket_lock(sk);

// Assume for TCP_ESTABLISHED

tcp_rcv(ctx, th);

queue_to_socket(sk, ctx);

socket_unlock(sk);

…

}

62



Specification
● Specification through annotations.

04 Ideas

Enum Stage { Raw, PostIP };

ip_rcv(xdp_md<Raw>, …) -> xdp_md<PostIP>

tcp_rcv(xdp_md<PostIP>, …) -> …

63



Specification
● Specification through annotations.
● Use type states to enforce ordering.
● Distinction only in BPF type system.
● For the user, everything is xdp_md.

04 Ideas

Enum Stage { Raw, PostIP };

ip_rcv(xdp_md<Raw>, …) -> xdp_md<PostIP>

tcp_rcv(xdp_md<PostIP>, …) -> …

64



Specification
● Need to hold socket lock of socket tied to 

this packet instance.

04 Ideas

Enum Stage { Raw, PostIP };

ip_rcv(xdp_md<Raw>, …) -> xdp_md<PostIP>

tcp_rcv(xdp_md<PostIP>, …) -> …

65



Specification
● Need to hold socket lock of socket tied to 

this packet instance.
● Needs to be reflected in the type system.
● Represent instances and parameterize 

constraints on them.

04 Ideas

Enum Stage { Raw, PostIP };

ip_rcv(xdp_md<Raw, ‘a>, …) -> 

xdp_md<PostIP, ‘a>

sk_lookup(xdp_md<PostIP, ‘a>) -> Socket<’a>

__requires_lock(Socket<’a>::lock)

tcp_rcv(xdp_md<PostIP, ‘a>, …) -> …

66



Separate annotation from enforcement
● Encode rules directly in source in a declarative fashion.
● Verifier consumes generic specification constructs and enforces them.
● Rules in the “skulls” of kernel developers are encoded in the source code.
● BPF type system is richer than the C type system w.r.t. the kernel’s safety 

constraints.

04 Ideas

67



Takeaway
● The core idea is “abstraction”, while preserving kernel’s safety.
● Present the user with tools to manipulate structural properties (spatial, temporal).
● Only impose constraints necessary for safety.
● Hide unnecessary details from the runtime and the user.
● Increase freedom, flexibility, accessibility.

04 Ideas

68



05 Challenges

69



Specification complexity
● We rely on the ingenuity of kernel developers to define a complete specification of 

safety properties.
● If they’re too strict, they restrict the design space.
● If they’re too relaxed, they open up potential safety holes.

05 Challenges

70



Specification complexity
● We rely on the ingenuity of kernel developers to define a complete specification of 

safety properties.
● If they’re too strict, they restrict the design space.
● If they’re too relaxed, they open up potential safety holes.
● This is a problem today as well, to some extent. Safety rules can be incomplete.
● Can we do better?

○ Exhaustive runtime checking of the specification for violations?
○ Eliminate incompleteness by construction?
○ If so, how to define completeness (what properties must be fulfilled)?

05 Challenges

71



Strict specifications restrict freedom
● Kernel built in a way such that its safety specification doesn’t allow for much 

freedom.
● E.g. no point in parallel processing if all code needs a lock around it.

05 Challenges

72



Strict specifications restrict freedom
● Kernel built in a way such that its safety specification doesn’t allow for much 

freedom.
● E.g. no point in parallel processing if all code needs a lock around it.
● Path 1: Relax constraints by changing kernel implementation.
● Path 2: Allow BPF to provide alternative, unconstrained implementation.

05 Challenges

73



74


