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Change is the only constant
● Evolving hardware demands the OS and workloads to adapt.
● Machines are scaling vertically.

○ More core counts, more PCIe bandwidth, more NIC bandwidth, etc.
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Change is the only constant
● Evolving hardware demands the OS and workloads to adapt.
● Machines are scaling vertically.

○ More core counts, more PCIe bandwidth, more NIC bandwidth, etc.
● Shifts bottlenecks into the host.

○ Suboptimal scheduling, but we now use sched_ext / ghOSt.
○ Higher resource utilization with isolation is difficult.
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Much ink has been spilled
● Tons of people exploring new ideas in industry in academia.
● Only a few make it into production kernels like Linux.
● It’s not just a technical problem, but also a human problem.
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“Valley of death” for interesting ideas.
● Interesting academic ideas fail to gain traction due to lack of integration.
● Relegated to prototype systems.
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“Valley of death” for interesting ideas
● Interesting academic ideas fail to gain traction due to lack of integration.
● Relegated to prototype systems.
● Others go with user space alternatives since kernel is hard to work with.
● Slower iteration, complex deployment, etc.
● eBPF helps here, but it’s limited in scope.
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CS 1: Dynamic Scaling of Network Stack
● Spread or join cores doing network processing dynamically.
● Google’s Snap / NetChannel both achieve this.
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CS 1: Dynamic Scaling of Network Stack
● Spread or join cores doing network processing dynamically.
● Google’s Snap / NetChannel both achieve this.

○ Snap: User space networking stack, single busy-polling thread controls spread or 
join logic. Engines encapsulate transport layer processing, engines mapped to 
threads.

○ NetChannel: Decouple packet processing queues from kthreads, then 
independently scale / compact both queues and threads, and control their 
assignments.

02 Case Studies
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https://research.google/pubs/snap-a-microkernel-approach-to-host-networking/
https://www.cs.cornell.edu/~qizhec/paper/netchannel.pdf


Why is threaded NAPI / cpumap not enough?
● We still need explicit CPU allocation for each thread.
● Wasted capacity when e.g. 4 threads on 4 CPUs are at 20% utilization each.
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Why is threaded NAPI / cpumap not enough?
● We still need explicit CPU allocation for each thread.
● Wasted capacity when e.g. 4 threads on 4 CPUs are at 20% utilization each.
● Cannot co-locate with application threads.

○ Packet processing will suffer ms-scale tail latencies.
● Cannot co-locate with itself to compact work onto same core.

○ Same issue; ms-scale tail latencies.
● See Jakub’s TAPI idea.

02 Case Studies
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https://people.kernel.org/kuba/#:~:text=TAPI%20(work%20in%20progress)


Efficiency
● Dynamic scaling enables better efficiency in two ways.
● 1) Overcommit and harvest underutilized capacity when relatively idle.
● 2) Reclaim cores proportionally when offered load is high.
● Scaling decisions are a function of many variables:

○ SLOs, target latency / throughput, traffic pattern (bursty vs streaming), etc.
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Isolation
● Co-locating ‘latency-critical’ and ‘throughput-intensive’ applications.
● Classic approach is through core-separation for both.
● Compact work onto same core if some latency inflation is tolerable, with prioritization.
● Requires control on packet processing within the worker.
● E.g. Weighted Round Robin when servicing NAPI instances, etc.
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Co-design with CPU scheduler
● This is partly a scheduling problem.
● We need soft-partitioning of network processing cores from the rest of the system.
● The network stack then maps work to its soft-partitioned core group.
● The core group grows and shrinks as per the offered load.
● The signal to grow and shrink is given to the CPU scheduler by the network stack.

02 Case Studies

16



“Warm” cores for absorbing bursts
● Keep aside a smaller partition of idle cores without going to lower c-state.
● Absorb bursts (translates to “spread through wakeups”) at microsecond-scale.
● Harvestable cores, but can be instantly preempted.
● Hot migration of whatever thread was running on them, to prevent starvation.
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Preventing starvation of EEVDF tasks
● Some housekeeping kthreads still need to be run on packet processing CPUs.
● Microsecond-scale time slicing is necessary (to avoid ms-scale tail latencies).
● Google did SCHED_FIFO-like MicroQuanta scheduling class for Snap threads.
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Preventing starvation of EEVDF tasks
● Some housekeeping kthreads still need to be run on packet processing CPUs.
● Microsecond-scale time slicing is necessary (to avoid ms-scale tail latencies).
● Google did SCHED_FIFO-like MicroQuanta scheduling class for Snap threads.
● Out of every 1 ms, 0.9 ms dedicated to MicroQuanta task, 0.1 ms to EEVDF tasks.
● Con: Blackout for 0.1 ms / 100 us. Adjust blackout period as per requirement.
● scx_microq? For now I just forward ported Xi Wang’s patch set to bpf-next.

02 Case Studies
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http://microq
https://lore.kernel.org/all/20190906093412.233463-2-xii@google.com/


CS 2: Dataplane Operating System
● A line of academic work where kernel-bypass libOS link with the application.
● Key idea: Co-design of scheduling and lightweight network data plane.
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CS 2: Dataplane Operating System
● A line of academic work where kernel-bypass libOS link with the application.
● Key idea: Co-design of scheduling and lightweight network data plane.
● Central dispatcher on one core.
● Distribute packets for network stack + application processing to workers 

busy-polling other cores.
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CS 2: Dataplane Operating System
● A line of academic work where kernel-bypass libOS link with the application.
● Key idea: Co-design of scheduling and lightweight network data plane.
● Central dispatcher on one core.
● Distribute packets for network stack + application processing to workers 

busy-polling other cores.
● Different scheduling strategies (FCFS, Processor Sharing) to handle different 

request latency distributions.
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Key differences
● All network processing co-located with application threads.
● Request latency spans (network + application) work.
● Hence inline execution allows scheduling control on both.
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Key differences
● All network processing co-located with application threads.
● Request latency spans (network + application) work.
● Hence inline execution allows scheduling control on both.
● Also customize the data path.

○ Zero-copy thin data path doing IP+TCP processing on XDP frames over AF_XDP.
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Key differences
● All network processing co-located with application threads.
● Request latency spans (network + application) work.
● Hence inline execution allows scheduling control on both.
● Also customize the data path.

○ Zero-copy thin data path doing IP+TCP processing on XDP frames over AF_XDP.
● Request latency can be 10s of us minimum.

02 Case Studies
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Takeaway
● Dynamic Scaling: Practical, beneficial, already proven to be useful.
● Dataplane OS: Academic, zero traction due to scorched-earth approach.
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Takeaway
● Dynamic Scaling: Practical, beneficial, already proven to be useful.
● Dataplane OS: Academic, zero traction due to scorched-earth approach.
● Both need:

○ Close integration of CPU scheduling with the network stack.
○ Fine-grained control on assignment of packet processing work to CPU.
○ Assignment can and will change dynamically.
○ Possible customization of data path.

02 Case Studies
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This sounds achievable!
● A lot of necessary pieces are available.

○ sched_ext, AF_XDP, cpumaps, etc.
○ Run BPF programs in kthreads.
○ Expose packet queues?
○ Some glue to tie everything together.
○ Piece together a struct_ops interface?
○ Add more hooks!
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This sounds achievable!
● A lot of necessary pieces are available.

○ sched_ext, AF_XDP, cpumaps, etc.
○ Run BPF programs in kthreads.
○ Expose packet queues?
○ Some glue to tie everything together.
○ Piece together a struct_ops interface?
○ Add more hooks!

● Let’s take a step back.

03 Rethinking BPF’s Role
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Why did this not happen already?
● Kernel is hard to change.
● Not a pressing business need.
● People equipped to make such changes stuck with other higher-priority work.
● Some scenarios are too deployment-specific.
● A combination of many reasons; social, and technical.
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But it did happen outside Linux!
● Academics built their own toy OS.

○ More control, faster iteration.
● Others went the user space kernel-bypass route.

○ Easier development, faster iteration.
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But it did happen outside Linux!
● Academics built their own toy OS.

○ More control, faster iteration.
● Others went the user space kernel-bypass route.

○ Easier development, faster iteration.
● What are they getting?

○ Freedom.
○ Freedom to make disruptive design choices people didn’t anticipate.
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But it did happen outside Linux!
● Academics built their own toy OS.

○ More control, faster iteration.
● Others went the user space kernel-bypass route.

○ Easier development, faster iteration.
● What are they getting?

○ Freedom.
○ Freedom to make disruptive design choices people didn’t anticipate.

● We want Linux to be the test bed, and for eBPF to be the means to innovate.

03 Rethinking BPF’s Role
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Anticipation is how extensibility works
● Safety is table stakes.
● So we do need to “anticipate” some sort of usage, and enforce safety around that.
● Safety translates to constraints (static or dynamic checks).
● Constraints limit freedom in design.
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What are we trying to change?
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What are we trying to change?
● Trying to change “where” things are executed, and “when”.
● Where: Execution context (which kthread, and indirectly, which core).
● When: Time of execution, i.e. scheduling (related: queueing, batching).
● Less concern on “what” is being executed, i.e. we’re mostly oblivious to work done.
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Not just networking
● A broad set of OS design changes require control over “where” and “when”

○ In addition to “what”, which eBPF can address already.
● “What” gets executed encapsulates functional logic of the kernel.
● “Where” and “when” encapsulate structural properties.
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Not just networking
● A broad set of OS design changes require control over “where” and “when”

○ In addition to “what”, which eBPF can address already.
● “What” gets executed encapsulates functional logic of the kernel.
● “Where” and “when” encapsulate structural properties.
● We need primitives to make structural changes, without anticipating use cases.
● Still safe, still not extreme freedom, but practically more than enough.
● For a correct kernel change, you STILL adhere to safety.

03 Rethinking BPF’s Role
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Approach: Mechanism

04 Ideas

● Encapsulate functional logic or computation as an object.
● Expose this object as part of BPF’s programing environment.
● Allow BPF developers to drive these objects to completion (i.e. execute them).
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Approach: Mechanism

04 Ideas

● Encapsulate functional logic or computation as an object.
● Expose this object as part of BPF’s programing environment.
● Allow BPF developers to drive these objects to completion (i.e. execute them).
● Separate execution resources (code + data) from their invocation.
● Hand over control and ownership of invocation to the BPF developer. 
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Coroutines

04 Ideas

● Encapsulation of code + data using coroutines.
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Coroutines

04 Ideas

● Encapsulation of code + data using coroutines.
○ 1960s tech, so nothing bleeding edge.
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Coroutines

04 Ideas

● Encapsulation of code + data using coroutines.
○ 1960s tech, so nothing bleeding edge.

● All logic is encapsulated in coroutine body.
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Coroutines

04 Ideas

● Encapsulation of code + data using coroutines.
○ 1960s tech, so nothing bleeding edge.

● All logic is encapsulated in coroutine body.
● Suspension points indicate “spatial” and 

“temporal” changes.
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Coroutines

04 Ideas

● Encapsulation of code + data using coroutines.
○ 1960s tech, so nothing bleeding edge.

● All logic is encapsulated in coroutine body.
● Suspension points indicate “spatial” and 

“temporal” changes.
○ Execution context / location can be switched.
○ Time until resumption is user-controlled.
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Coroutines

04 Ideas

● Encapsulation of code + data using coroutines.
○ 1960s tech, so nothing bleeding edge.

● All logic is encapsulated in coroutine body.
● Suspension points indicate “spatial” and 

“temporal” changes.
○ Execution context / location can be switched.
○ Time until resumption is user-controlled.

● Control over “where” and “when” is achieved.

48

https://melconway.com/Home/pdf/compiler.pdf


Coroutines
● Both examples want to maintain queues.
● Control over where and when packets are 

processed.

04 Ideas

data_path(struct xdp_md *ctx) {

co_await queue();

…

}
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Coroutines
● Both examples want to maintain queues.
● Control over where and when packets are 

processed.
● Suspension point provides a natural hook to 

do so.
● Data path processing on resumption.

04 Ideas

data_path(struct xdp_md *ctx) {

co_await queue();

…

}
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Coroutines
● Queue function gets access to coroutine 

handle of suspended coroutine.

04 Ideas

queue(coro_handle<> h) {

list = pick_queue(...);

list_add(&h->node, &list);

}
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Coroutines
● Queue function gets access to coroutine 

handle of suspended coroutine.
● Allow stashing coroutines as kptrs into 

maps, linked lists, RB-trees.

04 Ideas

queue(coro_handle<> h) {

list = pick_queue(...);

list_add(&h->node, &list);

}
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Coroutines
● Worker kthreads run BPF programs that 

can pull coroutines out and resume them.

04 Ideas

worker() {

while (h = list_pop_front(...))

h.resume();

}
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Coroutines
● Worker kthreads run BPF programs that 

can pull coroutines out and resume them.
● Natural point for batching.

04 Ideas

worker() {

int i = 0;

char coro_handle<> arr[BATCH_COUNT];

while (arr[i++] = list_pop_front(...))

if (i == BATCH_COUNT) break;

while (i—-)

arr[i].resume();

}
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Coroutines

04 Ideas

● Verifier + BPF runtime ensure resource safety and kernel integrity.
● Code + data packaged as an object whose lifetime is controlled by user.
● The same “building block” can be used to control “where” and “when”.
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Before you freak out!

04 Ideas

I’m not asking us to add coroutines to BPF…
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Before you freak out!

04 Ideas

I’m not asking us to add coroutines to BPF…YET.
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Approach: Safety

04 Ideas

● We want to apply this mechanism to any part of the kernel.
● The only requirement is to ensure “safety”.
● Safety == constraints enforced by BPF on use of these mechanisms.
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Approach: Safety

04 Ideas

● We want to apply this mechanism to any part of the kernel.
● The only requirement is to ensure “safety”.
● Safety == constraints enforced by BPF on use of these mechanisms.
● Make the kernel “export” these constraints as specifications.
● Not in the verifier, but through annotation of kernel code.
● Verifier is simply the consumer of the specification, and it’s enforcer.
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Specification
● Network Rx example.
● Lean zero-copy data path for dataplane OS.

04 Ideas

lean_data_path(struct xdp_md *ctx) {

iph = ip_hdr(ctx);

 th = tcp_hdr(ctx);

ip_rcv(ctx, iph);

sk = sk_lookup(ctx);

socket_lock(sk);

// Assume for TCP_ESTABLISHED

tcp_rcv(ctx, th);

queue_to_socket(sk, ctx);

socket_unlock(sk);

…

}
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Specification
● Two basic requirements:

○ ip_rcv must happen before tcp_rcv.

04 Ideas

lean_data_path(struct xdp_md *ctx) {

iph = ip_hdr(ctx);

 th = tcp_hdr(ctx);

ip_rcv(ctx, iph);

sk = sk_lookup(ctx);

socket_lock(sk);

// Assume for TCP_ESTABLISHED

tcp_rcv(ctx, th);

queue_to_socket(sk, ctx);

socket_unlock(sk);

…

}
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Specification
● Two basic requirements:

○ ip_rcv must happen before tcp_rcv.
○ tcp_rcv must have socket lock held. 

04 Ideas

lean_data_path(struct xdp_md *ctx) {

iph = ip_hdr(ctx);

 th = tcp_hdr(ctx);

ip_rcv(ctx, iph);

sk = sk_lookup(ctx);

socket_lock(sk);

// Assume for TCP_ESTABLISHED

tcp_rcv(ctx, th);

queue_to_socket(sk, ctx);

socket_unlock(sk);

…

}
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Specification
● Specification through annotations.

04 Ideas

Enum Stage { Raw, PostIP };

ip_rcv(xdp_md<Raw>, …) -> xdp_md<PostIP>

tcp_rcv(xdp_md<PostIP>, …) -> …
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Specification
● Specification through annotations.
● Use type states to enforce ordering.
● Distinction only in BPF type system.
● For the user, everything is xdp_md.

04 Ideas

Enum Stage { Raw, PostIP };

ip_rcv(xdp_md<Raw>, …) -> xdp_md<PostIP>

tcp_rcv(xdp_md<PostIP>, …) -> …
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Specification
● Need to hold socket lock of socket tied to 

this packet instance.

04 Ideas

Enum Stage { Raw, PostIP };

ip_rcv(xdp_md<Raw>, …) -> xdp_md<PostIP>

tcp_rcv(xdp_md<PostIP>, …) -> …
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Specification
● Need to hold socket lock of socket tied to 

this packet instance.
● Needs to be reflected in the type system.
● Represent instances and parameterize 

constraints on them.

04 Ideas

Enum Stage { Raw, PostIP };

ip_rcv(xdp_md<Raw, ‘a>, …) -> 

xdp_md<PostIP, ‘a>

sk_lookup(xdp_md<PostIP, ‘a>) -> Socket<’a>

__requires_lock(Socket<’a>::lock)

tcp_rcv(xdp_md<PostIP, ‘a>, …) -> …
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Separate annotation from enforcement
● Encode rules directly in source in a declarative fashion.
● Verifier consumes generic specification constructs and enforces them.
● Rules in the “skulls” of kernel developers are encoded in the source code.
● BPF type system is richer than the C type system w.r.t. the kernel’s safety 

constraints.

04 Ideas
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Takeaway
● The core idea is “abstraction”, while preserving kernel’s safety.
● Present the user with tools to manipulate structural properties (spatial, temporal).
● Only impose constraints necessary for safety.
● Hide unnecessary details from the runtime and the user.
● Increase freedom, flexibility, accessibility.

04 Ideas
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Specification complexity
● We rely on the ingenuity of kernel developers to define a complete specification of 

safety properties.
● If they’re too strict, they restrict the design space.
● If they’re too relaxed, they open up potential safety holes.
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Specification complexity
● We rely on the ingenuity of kernel developers to define a complete specification of 

safety properties.
● If they’re too strict, they restrict the design space.
● If they’re too relaxed, they open up potential safety holes.
● This is a problem today as well, to some extent. Safety rules can be incomplete.
● Can we do better?

○ Exhaustive runtime checking of the specification for violations?
○ Eliminate incompleteness by construction?
○ If so, how to define completeness (what properties must be fulfilled)?
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Strict specifications restrict freedom
● Kernel built in a way such that its safety specification doesn’t allow for much 

freedom.
● E.g. no point in parallel processing if all code needs a lock around it.
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Strict specifications restrict freedom
● Kernel built in a way such that its safety specification doesn’t allow for much 

freedom.
● E.g. no point in parallel processing if all code needs a lock around it.
● Path 1: Relax constraints by changing kernel implementation.
● Path 2: Allow BPF to provide alternative, unconstrained implementation.
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