Efficient |O-Intensive
us-scale Applications using

eBPF

i

e CALIRG
(5 e
§ A R~ %
HEL | An
22 5
LS '
I ‘..'. %, \," > '{) -..-'

I

Kumar Kartikeya Dwivedi Rishabh lyer Sanidhya Kashyap

Outline

01

02

03

04

05

Motivation

Case Studies

Rethinking BPF’s Role

|deas

Challenges

01 Motivation

01 Motivation

Change is the only constant

e Evolving hardware demands the OS and workloads to adapt.
e Machines are scaling vertically.
o More core counts, more PCle bandwidth, more NIC bandwidth, etc.

01 Motivation

Change is the only constant

e Evolving hardware demands the OS and workloads to adapt.
e Machines are scaling vertically.

o More core counts, more PCle bandwidth, more NIC bandwidth, etc.
e Shifts bottlenecks into the host.

o Suboptimal scheduling, but we now use sched_ext / ghOSt.
o Higher resource utilization with isolation is difficult.

01 Motivation

Much ink has been spilled

e Tons of people exploring new ideas in industry in academia.
e Only a few make it into production kernels like Linux.
e It's not just a technical problem, but also a human problem.

01 Motivation

“Valley of death” for interesting ideas.

e Interesting academic ideas fail to gain traction due to lack of integration.
e Relegated to prototype systems.

01 Motivation

“Valley of death” for interesting ideas

Interesting academic ideas fail to gain traction due to lack of integration.
Relegated to prototype systems.

Others go with user space alternatives since kernel is hard to work with.
Slower iteration, complex deployment, etc.

eBPF helps here, but it’s limited in scope.

02 Case Studies

02 Case Studies

CS 1: Dynamic Scaling of Network Stack

e Spread orjoin cores doing network processing dynamically.
e Google’s Snap / NetChannel both achieve this.

10

02 Case Studies

CS 1: Dynamic Scaling of Network Stack

e Spread orjoin cores doing network processing dynamically.
e Google’s Snap / NetChannel both achieve this.

o Snap: User space networking stack, single busy-polling thread controls spread or
join logic. Engines encapsulate transport layer processing, engines mapped to
threads.

o NetChannel: Decouple packet processing queues from kthreads, then

independently scale / compact both queues and threads, and control their
assignments.

11

https://research.google/pubs/snap-a-microkernel-approach-to-host-networking/
https://www.cs.cornell.edu/~qizhec/paper/netchannel.pdf

02 Case Studies

Why is threaded NAPI / cpumap not enough?

e We still need explicit CPU allocation for each thread.
e \Wasted capacity when e.g. 4 threads on 4 CPUs are at 20% utilization each.

12

02 Case Studies

Why is threaded NAPI / cpumap not enough?

e \We still need explicit CPU allocation for each thread.
e \Wasted capacity when e.g. 4 threads on 4 CPUs are at 20% utilization each.
e Cannot co-locate with application threads.
o Packet processing will suffer ms-scale tail latencies.
e Cannot co-locate with itself to compact work onto same core.

o Same issue; ms-scale tail latencies.
e See Jakub’s TAPI idea.

13

https://people.kernel.org/kuba/#:~:text=TAPI%20(work%20in%20progress)

02 Case Studies

Efficiency

Dynamic scaling enables better efficiency in two ways.

1) Overcommit and harvest underutilized capacity when relatively idle.

2) Reclaim cores proportionally when offered load is high.

Scaling decisions are a function of many variables:

o SLOs, target latency / throughput, traffic pattern (bursty vs streaming), etc.

14

02 Case Studies Linux (Default) BE5S
Linux (NetChannel) £33

2000 : !
1500

1000

Tail Latency (us)

Isolation
I08
] .]] .] Isolated Interference
e Co-locating ‘latency-critical’ and ‘throughput-intensive’ applications.
e Classic approach is through core-separation for both.
e Compact work onto same core if some latency inflation is tolerable, with prioritization.
e Requires control on packet processing within the worker.
e E.g. Weighted Round Robin when servicing NAPI instances, etc.

15

02 Case Studies

Co-design with CPU scheduler

This is partly a scheduling problem.

We need soft-partitioning of network processing cores from the rest of the system.
The network stack then maps work to its soft-partitioned core group.

The core group grows and shrinks as per the offered load.

The signal to grow and shrink is given to the CPU scheduler by the network stack.

16

02 Case Studies

“Warm” cores for absorbing bursts

e Keep aside a smaller partition of idle cores without going to lower c-state.

e Absorb bursts (translates to “spread through wakeups”) at microsecond-scale.
e Harvestable cores, but can be instantly preempted.

e Hot migration of whatever thread was running on them, to prevent starvation.

17

02 Case Studies

Preventing starvation of EEVDF tasks

e Some housekeeping kthreads still need to be run on packet processing CPUs.
e Microsecond-scale time slicing is necessary (to avoid ms-scale tail latencies).
e Google did SCHED_FIFO-like MicroQuanta scheduling class for Snap threads.

18

02 Case Studies

Preventing starvation of EEVDF tasks

Some housekeeping kthreads still need to be run on packet processing CPUs.
Microsecond-scale time slicing is necessary (to avoid ms-scale tail latencies).
Google did SCHED_FIFO-like MicroQuanta scheduling class for Snap threads.

Con: Blackout for 0.1 ms /100 us. Adjust blackout period as per requirement.
scx_microq? For now | just forward ported Xi Wang’s patch set to bpf-next.

Out of every 1 ms, 0.9 ms dedicated to MicroQuanta task, 0.1 ms to EEVDF tasks.

19

http://microq
https://lore.kernel.org/all/20190906093412.233463-2-xii@google.com/

02 Case Studies

CS 2: Dataplane Operating System

e A line of academic work where kernel-bypass libOS link with the application.
e Key idea: Co-design of scheduling and lightweight network data plane.

20

02 Case Studies

CS 2: Dataplane Operating System

A line of academic work where kernel-bypass libOS link with the application.
Key idea: Co-design of scheduling and lightweight network data plane.
Central dispatcher on one core.

Distribute packets for network stack + application processing to workers
busy-polling other cores.

21

02 Case Studies

CS 2: Dataplane Operating System

A line of academic work where kernel-bypass libOS link with the application.
Key idea: Co-design of scheduling and lightweight network data plane.
Central dispatcher on one core.

Distribute packets for network stack + application processing to workers
busy-polling other cores.

e Different scheduling strategies (FCFS, Processor Sharing) to handle different
request latency distributions.

22

02 Case Studies

Key differences

e All network processing co-located with application threads.
e Request latency spans (network + application) work.
e Hence inline execution allows scheduling control on both.

23

02 Case Studies

Key differences

All network processing co-located with application threads.
Request latency spans (network + application) work.

Hence inline execution allows scheduling control on both.
Also customize the data path.

o Zero-copy thin data path doing IP+TCP processing on XDP frames over AF_XDP.

24

02 Case Studies

Key differences

All network processing co-located with application threads.
Request latency spans (network + application) work.

Hence inline execution allows scheduling control on both.
Also customize the data path.

o Zero-copy thin data path doing IP+TCP processing on XDP frames over AF_XDP.
e Request latency can be 10s of us minimum.

25

02 Case Studies

Takeaway

e Dynamic Scaling: Practical, beneficial, already proven to be useful.
e Dataplane OS: Academic, zero traction due to scorched-earth approach.

26

02 Case Studies

Takeaway

e Dynamic Scaling: Practical, beneficial, already proven to be useful.
e Dataplane OS: Academic, zero traction due to scorched-earth approach.
e Both need:

O

O
O
O

Close integration of CPU scheduling with t
Fine-grained control on assignment of pac

ne network stack.
et processing work to CPU.

Assignment can and will change dynamica
Possible customization of data path.

ly.

27

03 Rethinking BPF’s Role

28

03

Rethinking BPF’s Role

This sounds achievable!

e A lot of necessary pieces are available.

O

o O O O O

sched_ext, AF_XDP, cpumaps, etc.
Run BPF programs in kthreads.
Expose packet queues?

Some glue to tie everything together.

Piece together a struct_ops interface?
Add more hooks!

29

03

Rethinking BPF’s Role

This sounds achievable!

e A lot of necessary pieces are available.

O

o O O O

O

sched_ext, AF_XDP, cpumaps, etc.
Run BPF programs in kthreads.
Expose packet queues?

Some glue to tie everything together.

Piece together a struct_ops interface?
Add more hooks!

e Let’s take a step back.

ATSATRAP

30

03

Rethinking BPF’s Role

Why did this not happen already?

Kernel is hard to change.

Not a pressing business need.

People equipped to make such changes stuck with other higher-priority work.
Some scenarios are too deployment-specific.

A combination of many reasons; social, and technical.

3

03

Rethinking BPF’s Role

But it did happen outside Linux!

e Academics built their own toy OS.
o More control, faster iteration.

e Others went the user space kernel-bypass route.
o Easier development, faster iteration.

32

03

Rethinking BPF’s Role

But it did happen outside Linux!

e Academics built their own toy OS.
o More control, faster iteration.

e Others went the user space kernel-bypass route.
o Easier development, faster iteration.

e \What are they getting?

o Freedom.
o Freedom to make disruptive design choices people didn’t anticipate.

33

03

Rethinking BPF’s Role

But it did happen outside Linux!

e Academics built their own toy OS.
o More control, faster iteration.

e Others went the user space kernel-bypass route.
o Easier development, faster iteration.

e \What are they getting?

o Freedom.
o Freedom to make disruptive design choices people didn’t anticipate.

e We want Linux to be the test bed, and for eBPF to be the means to innovate.

34

03

Rethinking BPF’s Role

Anticipation is how extensibility works

Safety is table stakes.

So we do need to “anticipate” some sort of usage, and enforce safety around that.
Safety translates to constraints (static or dynamic checks).

Constraints limit freedom in design.

35

03

Rethinking BPF’s Role

What are we trying to change?

36

03

Rethinking BPF’s Role

What are we trying to change?

Trying to change “where” things are executed, and “when”.

Where: Execution context (which kthread, and indirectly, which core).

When: Time of execution, i.e. scheduling (related: queueing, batching).

Less concern on “what” is being executed, i.e. we’re mostly oblivious to work done.

37

03

Rethinking BPF’s Role

Not just networking

e A broad set of OS design changes require control over “where” and “when”
o Inaddition to “what”, which eBPF can address already.

e “What” gets executed encapsulates functional logic of the kernel.

e “Where” and “when” encapsulate structural properties.

38

03

Rethinking BPF’s Role

Not just networking

e A broad set of OS design changes require control over “where” and “when”

o Inaddition to “what”, which eBPF can address already.

“What” gets executed encapsulates functional logic of the kernel.

“Where” and “when” encapsulate structural properties.

We need primitives to make structural changes, without anticipating use cases.
Still safe, still not extreme freedom, but practically more than enough.

For a correct kernel change, you STILL adhere to safety.

39

04

|deas

40

04

Ideas

Approach: Mechanism

e Encapsulate functional logic or computation as an object.
e Expose this object as part of BPF’s programing environment.
e Allow BPF developers to drive these objects to completion (i.e. execute them).

41

04

Ideas

Approach: Mechanism

Encapsulate functional logic or computation as an object.

Expose this object as part of BPF’s programing environment.

Allow BPF developers to drive these objects to completion (i.e. execute them).
Separate execution resources (code + data) from their invocation.

Hand over control and ownership of invocation to the BPF developer.

42

04

Ideas

Coroutines

e Encapsulation of code + data using coroutines.

435

04

Ideas

Coroutines

e Encapsulation of code + data using coroutines.
o 1960s tech, so nothing bleeding edge.

Design of a Separable

Transition-Diagram Compiler*

MELvIN E. CoNnway
Directorate of Computers, USAF
L. G. Hanscom Field, Bedford, Mass.

A COBOL compiler design is presented which is compact
enough to permit rapid, one-pass compilation of a large sub-
set of COBOL on a moderately large computer. Versions of
the same compiler for smaller machines require only two work-
ing tapes plus a compiler tape. The methods given are largely
applicable to the construction of ALGOL compilers.

Introduction

This paper is written in rebuttal of three propositions
widely held among compiler writers, to wit: (1) syntax-
directed compilers [1] suffer practical disadvantages over
other types of compilers, chiefly in speed; (2) compilers
should be written with compilers; (3) CoBoL [2] compilers
must be complicated. The form of the rebuttal is to de-
seribe a high-speed, one-pass, syntax-directed CoBoL com-
piler which can be built by two people with an assembler
in less than a year.

The compiler design presented here has the following
properties.

1. It processes full elective CoBoL except for automatic
segmentation and its byproducts, such as those properties
of the aureER verb which are affected by segmentation.
The verbs DEFINE, ENTER, USE and INCLUDE are accessible
to the design but were not included in the prototype coded
at the Case Computing Center.

2. It can be implemented as a true one-pass compiler
(with load-time fixup of forward references to procedure
names) on a machine with 10,000 to 16,000 words of high-
speed storage. In this configuration it processes a source

doclr ac fact ac anrrant ana nace aleahnain anmanilans

to make this design (in which all tables are accessed while
stored in memory) practical on contemporary computers.
None of these techniques is limited in application to CoBoL
compilers. The following specific techniques are discussed:
the coroutine method of separating programs, transition
diagrams in syntactical analysis, data name qualification
analysis, and instruction generation for conditional state-
ments.

The algorithms described were verified on the 5000-word
Burroughs 220 at the Case Institute of Technology Com-
puting Center. A two-pass configuration was planned for
that machine, and first-pass code was checked out through
the syntactical analysis. At the time the project was dis-
continued a complete CoBoL syntax checker was operating
at 140 fully-punched source cards per minute. (The Case
220 had a typical single-address instruction time of 100
microseconds.) Remarks presented later suggest that a
complete one-pass version of the compiler, which would
be feasible on a 10,000-word machine, would run at well
over 100 source cards per minute.

Coroutines and Separable Programs

That property of the design which makes it amenable to
many segment configurations is its separability. A program
organization is separable if it is broken up into processing
modules which communicate with each other according to
the following restrictions: (1) the only communication
between modules is in the form of discrete items of in-
formation; (2) the flow of each of these items is along
fixed, one-way paths; (3) the entire program can be laid
out so that the input is at the left extreme, the output is at
the right extreme, and everywhere in between all informa-
tion items flowing between modules have a component of
motion to the right.

Under these conditions each module may be made into
a coroutine; that is, it may be coded as an autonomous pro-
gram which communicates with adjacent modules as if
they were input or output subroutines. Thus, coroutines
are subroutines all at the same level, each acting as if it

were the master program when in fact there is no master
nraoram ! Thara ic na hannd nlared hv thic dafinitian an

44

https://melconway.com/Home/pdf/compiler.pdf

04

Ideas

Coroutines

e Encapsulation of code + data using coroutines.
o 1960s tech, so nothing bleeding edge.

e Alllogicis encapsulated in coroutine body.

Design of a Separable

Transition-Diagram Compiler*

MELvIN E. CoNnway
Directorate of Computers, USAF
L. G. Hanscom Field, Bedford, Mass.

A COBOL compiler design is presented which is compact
enough to permit rapid, one-pass compilation of a large sub-
set of COBOL on a moderately large computer. Versions of
the same compiler for smaller machines require only two work-
ing tapes plus a compiler tape. The methods given are largely
applicable to the construction of ALGOL compilers.

Introduction

This paper is written in rebuttal of three propositions
widely held among compiler writers, to wit: (1) syntax-
directed compilers [1] suffer practical disadvantages over
other types of compilers, chiefly in speed; (2) compilers
should be written with compilers; (3) CoBoL [2] compilers
must be complicated. The form of the rebuttal is to de-
seribe a high-speed, one-pass, syntax-directed CoBoL com-
piler which can be built by two people with an assembler
in less than a year.

The compiler design presented here has the following
properties.

1. It processes full elective CoBoL except for automatic
segmentation and its byproducts, such as those properties
of the aureER verb which are affected by segmentation.
The verbs DEFINE, ENTER, USE and INCLUDE are accessible
to the design but were not included in the prototype coded
at the Case Computing Center.

2. It can be implemented as a true one-pass compiler
(with load-time fixup of forward references to procedure
names) on a machine with 10,000 to 16,000 words of high-
speed storage. In this configuration it processes a source

doclr ac fact ac anrrant ana nace aleahnain anmanilans

to make this design (in which all tables are accessed while
stored in memory) practical on contemporary computers.
None of these techniques is limited in application to CoBoL
compilers. The following specific techniques are discussed:
the coroutine method of separating programs, transition
diagrams in syntactical analysis, data name qualification
analysis, and instruction generation for conditional state-
ments.

The algorithms described were verified on the 5000-word
Burroughs 220 at the Case Institute of Technology Com-
puting Center. A two-pass configuration was planned for
that machine, and first-pass code was checked out through
the syntactical analysis. At the time the project was dis-
continued a complete CoBoL syntax checker was operating
at 140 fully-punched source cards per minute. (The Case
220 had a typical single-address instruction time of 100
microseconds.) Remarks presented later suggest that a
complete one-pass version of the compiler, which would
be feasible on a 10,000-word machine, would run at well
over 100 source cards per minute.

Coroutines and Separable Programs

That property of the design which makes it amenable to
many segment configurations is its separability. A program
organization is separable if it is broken up into processing
modules which communicate with each other according to
the following restrictions: (1) the only communication
between modules is in the form of discrete items of in-
formation; (2) the flow of each of these items is along
fixed, one-way paths; (3) the entire program can be laid
out so that the input is at the left extreme, the output is at
the right extreme, and everywhere in between all informa-
tion items flowing between modules have a component of
motion to the right.

Under these conditions each module may be made into
a coroutine; that is, it may be coded as an autonomous pro-
gram which communicates with adjacent modules as if
they were input or output subroutines. Thus, coroutines
are subroutines all at the same level, each acting as if it

were the master program when in fact there is no master
nraoram ! Thara ic na hannd nlared hv thic dafinitian an

45

https://melconway.com/Home/pdf/compiler.pdf

04

Ideas

Coroutines

e Encapsulation of code + data using coroutines.
o 1960s tech, so nothing bleeding edge.

e Alllogicis encapsulated in coroutine body.
e Suspension points indicate “spatia

“tempora

I”

changes.

I”

and

Design of a Separable

Transition-Diagram Compiler*

MELvIN E. CoNnway
Directorate of Computers, USAF
L. G. Hanscom Field, Bedford, Mass.

A COBOL compiler design is presented which is compact
enough to permit rapid, one-pass compilation of a large sub-
set of COBOL on a moderately large computer. Versions of
the same compiler for smaller machines require only two work-
ing tapes plus a compiler tape. The methods given are largely
applicable to the construction of ALGOL compilers.

Introduction

This paper is written in rebuttal of three propositions
widely held among compiler writers, to wit: (1) syntax-
directed compilers [1] suffer practical disadvantages over
other types of compilers, chiefly in speed; (2) compilers
should be written with compilers; (3) CoBoL [2] compilers
must be complicated. The form of the rebuttal is to de-
seribe a high-speed, one-pass, syntax-directed CoBoL com-
piler which can be built by two people with an assembler
in less than a year.

The compiler design presented here has the following
properties.

1. It processes full elective CoBoL except for automatic
segmentation and its byproducts, such as those properties
of the aureER verb which are affected by segmentation.
The verbs DEFINE, ENTER, USE and INCLUDE are accessible
to the design but were not included in the prototype coded
at the Case Computing Center.

2. It can be implemented as a true one-pass compiler
(with load-time fixup of forward references to procedure
names) on a machine with 10,000 to 16,000 words of high-
speed storage. In this configuration it processes a source

doclr ac fact ac anrrant ana nace aleahnain anmanilans

to make this design (in which all tables are accessed while
stored in memory) practical on contemporary computers.
None of these techniques is limited in application to CoBoL
compilers. The following specific techniques are discussed:
the coroutine method of separating programs, transition
diagrams in syntactical analysis, data name qualification
analysis, and instruction generation for conditional state-
ments.

The algorithms described were verified on the 5000-word
Burroughs 220 at the Case Institute of Technology Com-
puting Center. A two-pass configuration was planned for
that machine, and first-pass code was checked out through
the syntactical analysis. At the time the project was dis-
continued a complete CoBoL syntax checker was operating
at 140 fully-punched source cards per minute. (The Case
220 had a typical single-address instruction time of 100
microseconds.) Remarks presented later suggest that a
complete one-pass version of the compiler, which would
be feasible on a 10,000-word machine, would run at well
over 100 source cards per minute.

Coroutines and Separable Programs

That property of the design which makes it amenable to
many segment configurations is its separability. A program
organization is separable if it is broken up into processing
modules which communicate with each other according to
the following restrictions: (1) the only communication
between modules is in the form of discrete items of in-
formation; (2) the flow of each of these items is along
fixed, one-way paths; (3) the entire program can be laid
out so that the input is at the left extreme, the output is at
the right extreme, and everywhere in between all informa-
tion items flowing between modules have a component of
motion to the right.

Under these conditions each module may be made into
a coroutine; that is, it may be coded as an autonomous pro-
gram which communicates with adjacent modules as if
they were input or output subroutines. Thus, coroutines
are subroutines all at the same level, each acting as if it

were the master program when in fact there is no master
nraoram ! Thara ic na hannd nlared hv thic dafinitian an

46

https://melconway.com/Home/pdf/compiler.pdf

04 Ideas

Coroutines

e Encapsulation of code + data using coroutines.
o 1960s tech, so nothing bleeding edge.

e Alllogicis encapsulated in coroutine body.

I”

e Suspension points indicate “spatial” and

I”

“temporal” changes.
o Execution context / location can be switched.

o Time until resumption is user-controlled.

Design of a Separable

Transition-Diagram Compiler*

MEeLvIN E. Conway

Directorate of Computers, USAF
L. G. Hanscom Field, Bedford, Mass.

A COBOL compiler design is presented which is compact
enough to permit rapid, one-pass compilation of a large sub-
set of COBOL on a moderately large computer. Versions of
the same compiler for smaller machines require only two work-
ing tapes plus a compiler tape. The methods given are largely
applicable to the construction of ALGOL compilers.

Introduction

This paper is written in rebuttal of three propositions
widely held among compiler writers, to wit: (1) syntax-
directed compilers [1] suffer practical disadvantages over
other types of compilers, chiefly in speed; (2) compilers
should be written with compilers; (3) CoBoL [2] compilers
must be complicated. The form of the rebuttal is to de-
seribe a high-speed, one-pass, syntax-directed CoBoL com-
piler which can be built by two people with an assembler
in less than a year.

The compiler design presented here has the following
properties.

1. It processes full elective CoBoL except for automatic
segmentation and its byproducts, such as those properties
of the aureER verb which are affected by segmentation.
The verbs DEFINE, ENTER, USE and INCLUDE are accessible
to the design but were not included in the prototype coded
at the Case Computing Center.

2. It can be implemented as a true one-pass compiler
(with load-time fixup of forward references to procedure
names) on a machine with 10,000 to 16,000 words of high-
speed storage. In this configuration it processes a source

doclr ac fact ac anrrant ana nace aleahnain anmanilans

to make this design (in which all tables are accessed while
stored in memory) practical on contemporary computers.
None of these techniques is limited in application to CoBoL
compilers. The following specific techniques are discussed:
the coroutine method of separating programs, transition
diagrams in syntactical analysis, data name qualification
analysis, and instruction generation for conditional state-
ments.

The algorithms described were verified on the 5000-word
Burroughs 220 at the Case Institute of Technology Com-
puting Center. A two-pass configuration was planned for
that machine, and first-pass code was checked out through
the syntactical analysis. At the time the project was dis-
continued a complete CoBoL syntax checker was operating
at 140 fully-punched source cards per minute. (The Case
220 had a typical single-address instruction time of 100
microseconds.) Remarks presented later suggest that a
complete one-pass version of the compiler, which would
be feasible on a 10,000-word machine, would run at well
over 100 source cards per minute.

Coroutines and Separable Programs

That property of the design which makes it amenable to
many segment configurations is its separability. A program
organization is separable if it is broken up into processing
modules which communicate with each other according to
the following restrictions: (1) the only communication
between modules is in the form of discrete items of in-
formation; (2) the flow of each of these items is along
fixed, one-way paths; (3) the entire program can be laid
out so that the input is at the left extreme, the output is at
the right extreme, and everywhere in between all informa-
tion items flowing between modules have a component of
motion to the right.

Under these conditions each module may be made into
a coroutine; that is, it may be coded as an autonomous pro-
gram which communicates with adjacent modules as if
they were input or output subroutines. Thus, coroutines
are subroutines all at the same level, each acting as if it

were the master program when in fact there is no master
nraoram ! Thara ic na hannd nlared hv thic dafinitian an

47

https://melconway.com/Home/pdf/compiler.pdf

04 Ideas

Coroutines

e Encapsulation of code + data using coroutines.
o 1960s tech, so nothing bleeding edge.

e Alllogicis encapsulated in coroutine body.

I”

e Suspension points indicate “spatial” and

I”

“temporal” changes.
o Execution context / location can be switched.
o Time until resumption is user-controlled.

e Control over “where” and “when” is achieved.

Design of a Separable

Transition-Diagram Compiler*

MELvIN E. CoNnway
Directorate of Computers, USAF
L. G. Hanscom Field, Bedford, Mass.

A COBOL compiler design is presented which is compact
enough to permit rapid, one-pass compilation of a large sub-
set of COBOL on a moderately large computer. Versions of
the same compiler for smaller machines require only two work-
ing tapes plus a compiler tape. The methods given are largely
applicable to the construction of ALGOL compilers.

Introduction

This paper is written in rebuttal of three propositions
widely held among compiler writers, to wit: (1) syntax-
directed compilers [1] suffer practical disadvantages over
other types of compilers, chiefly in speed; (2) compilers
should be written with compilers; (3) CoBoL [2] compilers
must be complicated. The form of the rebuttal is to de-
seribe a high-speed, one-pass, syntax-directed CoBoL com-
piler which can be built by two people with an assembler
in less than a year.

The compiler design presented here has the following
properties.

1. It processes full elective CoBoL except for automatic
segmentation and its byproducts, such as those properties
of the aureER verb which are affected by segmentation.
The verbs DEFINE, ENTER, USE and INCLUDE are accessible
to the design but were not included in the prototype coded
at the Case Computing Center.

2. It can be implemented as a true one-pass compiler
(with load-time fixup of forward references to procedure
names) on a machine with 10,000 to 16,000 words of high-
speed storage. In this configuration it processes a source

doclr ac fact ac anrrant ana nace aleahnain anmanilans

to make this design (in which all tables are accessed while
stored in memory) practical on contemporary computers.
None of these techniques is limited in application to CoBoL
compilers. The following specific techniques are discussed:
the coroutine method of separating programs, transition
diagrams in syntactical analysis, data name qualification
analysis, and instruction generation for conditional state-
ments.

The algorithms described were verified on the 5000-word
Burroughs 220 at the Case Institute of Technology Com-
puting Center. A two-pass configuration was planned for
that machine, and first-pass code was checked out through
the syntactical analysis. At the time the project was dis-
continued a complete CoBoL syntax checker was operating
at 140 fully-punched source cards per minute. (The Case
220 had a typical single-address instruction time of 100
microseconds.) Remarks presented later suggest that a
complete one-pass version of the compiler, which would
be feasible on a 10,000-word machine, would run at well
over 100 source cards per minute.

Coroutines and Separable Programs

That property of the design which makes it amenable to
many segment configurations is its separability. A program
organization is separable if it is broken up into processing
modules which communicate with each other according to
the following restrictions: (1) the only communication
between modules is in the form of discrete items of in-
formation; (2) the flow of each of these items is along
fixed, one-way paths; (3) the entire program can be laid
out so that the input is at the left extreme, the output is at
the right extreme, and everywhere in between all informa-
tion items flowing between modules have a component of
motion to the right.

Under these conditions each module may be made into
a coroutine; that is, it may be coded as an autonomous pro-
gram which communicates with adjacent modules as if
they were input or output subroutines. Thus, coroutines
are subroutines all at the same level, each acting as if it

were the master program when in fact there is no master
nraoram ! Thara ic na hannd nlared hv thic dafinitian an

48

https://melconway.com/Home/pdf/compiler.pdf

04 Ideas

Coroutines

e Both examples want to maintain queues.
e Control over where and when packets are
processed.

data_path(struct xdp_md =xctx) {
co_await queue();

49

04 Ideas

Coroutines

e Both examples want to maintain queues.

e Control over where and when packets are
processed.

e Suspension point provides a natural hook to
do so.

e Data path processing on resumption.

data_path(struct xdp_md =xctx) {
co_await queue();

50

04 Ideas

Coroutines

e Queue function gets access to coroutine
handle of suspended coroutine.

queue (coro_handle<> h) {
list = pick_queue(...);
list_add(&h->node, &list);

o)

04 Ideas

Coroutines

e Queue function gets access to coroutine
handle of suspended coroutine.

e Allow stashing coroutines as kptrs into
maps, linked lists, RB-trees.

queue (coro_handle<> h) {
list = pick_queue(...);
list_add(&h->node, &list);

52

04 Ideas

Coroutines

e Worker kthreads run BPF programs that
can pull coroutines out and resume them.

worker() ¢{
while (h = list_pop_front(...))
h.resume();

53

04 Ideas

Coroutines worker() {
int 1 = O;
e Worker kthreads run BPF programs that char coro_handle<> arr[BATCH_COUNT];
can pull coroutines out and resume them. while (arr[i++] = list_pop_front(...))
e Natural point for batching. if (i == BATCH_COUNT) break:
while (i—-)

arr[i] .resume();

54

04

Ideas

Coroutines

e Verifier + BPF runtime ensure resource safety and kernel integrity.
e Code + data packaged as an object whose lifetime is controlled by user.
e The same “building block” can be used to control “where” and “when”.

55

04

Ideas

Before you freak out!

I’m not asking us to add coroutines to BPF...

56

04

Ideas

Before you freak out!

I’m not asking us to add coroutines to BPF...YET.

57

04

Ideas

Approach: Safety

e \We want to apply this mechanism to any part of the kernel.
e The only requirement is to ensure “safety”.

e Safety == constraints enforced by BPF on use of these mechanisms.

58

04

Ideas

Approach: Safety

We want to apply this mechanism to any part of the kernel.
The only requirement is to ensure “safety”.

Safety == constraints enforced by BPF on use of these mechanisms.

Make the kernel “export” these constraints as specifications.
Not in the verifier, but through annotation of kernel code.

Verifier is simply the consumer of the specification, and it’s enforcer.

59

04 Ideas

Specification

e Network Rx example.
e Lean zero-copy data path for dataplane OS.

lean_data_path(struct xdp_md *ctx) {
iph ip_hdr(ctx);
th = tcp_hdr(ctx);

ip_rcv(ctx, iph);

sk = sk_lookup(ctx);
socket_lock(sk);
// Assume for TCP_ESTABLISHED

tcp_rcv(ctx, th);

queue_to_socket(sk, ctx);
socket_unlock(sk);

60

04 Ideas

Specification

e Two basic requirements:
o ip_rcv must happen before tcp_rcv.

lean_data_path(struct xdp_md *ctx) {
iph ip_hdr(ctx);
th = tcp_hdr(ctx);

ip_rcv(ctx, iph);

sk = sk_lookup(ctx);
socket_lock(sk);
// Assume for TCP_ESTABLISHED

tcp_rcv(ctx, th);

queue_to_socket(sk, ctx);
socket_unlock(sk);

61

04 Ideas

Specification

e Two basic requirements:
o ip_rcv must happen before tcp_rcv.
o tcp_rcv must have socket lock held.

lean_data_path(struct xdp_md *ctx) {
iph ip_hdr(ctx);
th = tcp_hdr(ctx);

ip_rcv(ctx, iph);

sk = sk_lookup(ctx);
socket_lock(sk);
// Assume for TCP_ESTABLISHED

tcp_rcv(ctx, th);

queue_to_socket(sk, ctx);
socket_unlock(sk);

62

04 Ideas

Specification

e Specification through annotations.

Enum Stage { Raw, PostIP };

ip_rcv(xdp_md<Raw>, ..) —-> xdp_md<PostIP>

tcp_rcv(xdp_md<PostIP>, ..) —-> ..

63

04 Ideas

Enum Stage { Raw, PostIP };

SpeC|f|Cat|On ip_rcv(xdp_md<Raw>, ..) —> xdp_md<PostIP>
e Specification through annotations.

e Use type states to enforce ordering.

e Distinction only in BPF type system. tep_rev(xdp_md<PostIP>, ..) —> ..

e For the user, everythingis xdp_md.

04 Ideas

Specification

e Need to hold socket lock of socket tied to
this packet instance.

Enum Stage { Raw, PostIP };

ip_rcv(xdp_md<Raw>, ..) -> xdp_md<PostIP>

tcp_rcv(xdp_md<PostIP>, ..) —-> ..

65

04 Ideas

Enum Stage { Raw, PostIP };

SpeCification ip_rcv(xdp_md<Raw, ‘a>, ..) ->

xdp_md<PostIP, ‘a>
e Need to hold socket lock of socket tied to

this packet instance. sk_lookup(xdp_md<PostIP, ‘a>) -> Socket<’a>

e Needs to bereflected in the type system. requires_lock(Socket<’a>::1lock)

e Representinstances and parameterize tcp_rev(xdp_md<PostIP, ‘a>, ..) —>

constraints on them.

66

04

Ideas

Separate annotation from enforcement

Encode rules directly in source in a declarative fashion.
Verifier consumes generic specification constructs and enforces them.
Rules in the “skulls” of kernel developers are encoded in the source code.

BPF type system is richer than the C type system w.r.t. the kernel’s safety
constraints.

67

04

Ideas

Takeaway

The core idea is “abstraction”, while preserving kernel’s safety.

Present the user with tools to manipulate structural properties (spatial, temporal).
Only impose constraints necessary for safety.

Hide unnecessary details from the runtime and the user.

Increase freedom, flexibility, accessibility.

68

05 Challenges

69

05

Challenges

Specification complexity

e We rely on the ingenuity of kernel developers to define a complete specification of
safety properties.

e If they're too strict, they restrict the design space.
e If they're too relaxed, they open up potential safety holes.

/70

05

Challenges

Specification complexity

e We rely on the ingenuity of kernel developers to define a complete specification of
safety properties.

If they’re too strict, they restrict the design space.
If they’re too relaxed, they open up potential safety holes.

This is a problem today as well, to some extent. Safety rules can be incomplete.
Can we do better?

o Exhaustive runtime checking of the specification for violations?
o Eliminate incompleteness by construction?

o If so, how to define completeness (what properties must be fulfilled)?

71

05

Challenges

Strict specifications restrict freedom

e Kernel built in a way such that its safety specification doesn’t allow for much
freedom.
e E.g.no pointin parallel processing if all code needs a lock around it.

72

05

Challenges

Strict specifications restrict freedom

e Kernel built in a way such that its safety specification doesn’t allow for much
freedom.

e E.g.no pointin parallel processing if all code needs a lock around it.

e Path 1: Relax constraints by changing kernel implementation.

e Path 2: Allow BPF to provide alternative, unconstrained implementation.

73

74

